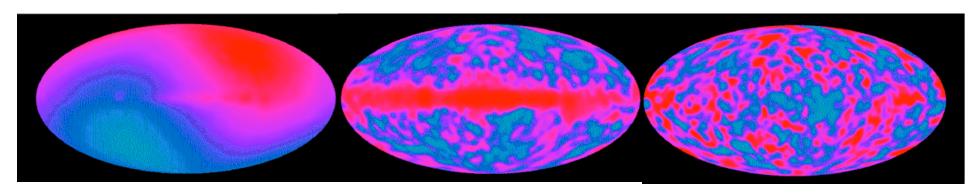
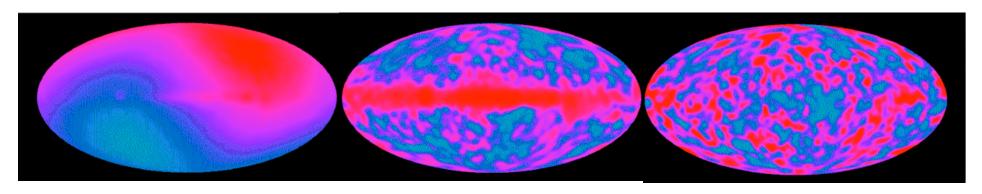
Elliptic Flow Fluctuations at RHIC and more

Paul Sorensen Brookhaven National Laboratory



and more = super-horizon fluctuations and fluctuations in the initial conditions

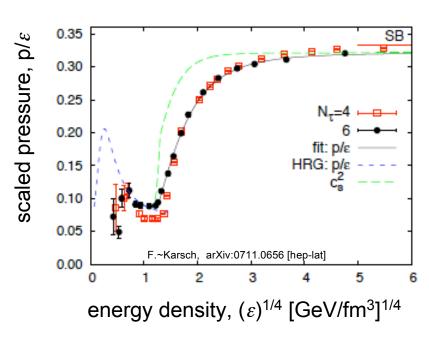
Paul Sorensen Brookhaven National Laboratory

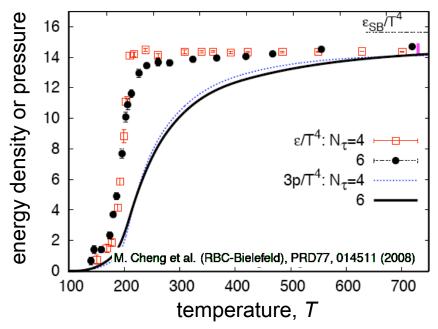


QGP in theory

Quark Gluon Plasma established theoretically

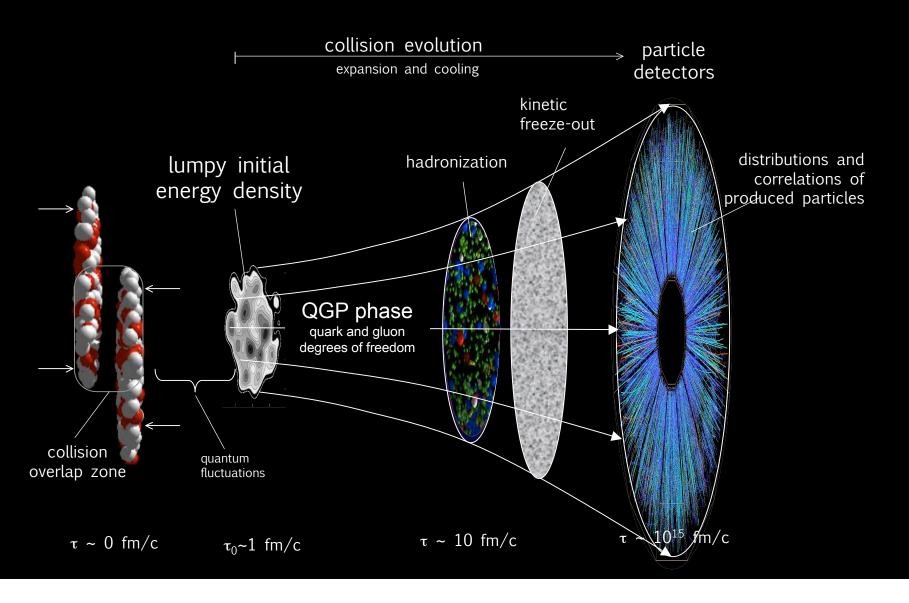
Lattice calculations indicate a rapid crossover accompanied by an increase in the number of degrees of freedom





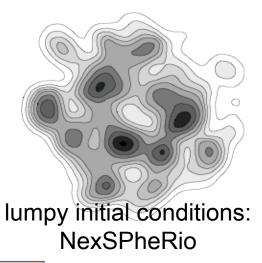
How can QGP be studied in the lab?

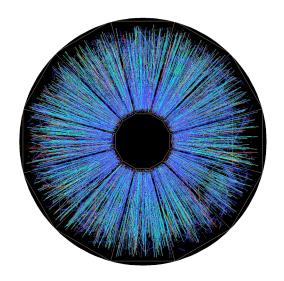
Nuclear collisions and the QGP expansion



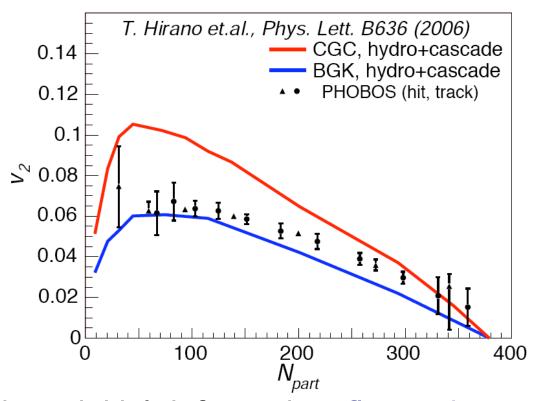
Correlations and Fluctuations

as the system expands are the correlations and fluctuations from the initial conditions carried over to the final state?



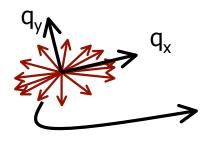


Understanding initial conditions



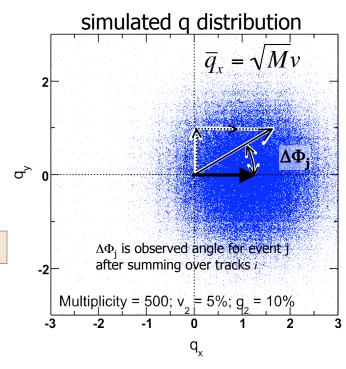
v₂ depends on initial deformation: fluctuations of v₂ can reveal information about fluctuations and correlations in the initial conditions

Flow vector distribution



$$q_{n,x} = \frac{1}{\sqrt{M}} \sum_{i=1}^{M} \cos(n\varphi_i)$$
$$q_{n,y} = \frac{1}{\sqrt{M}} \sum_{i=1}^{M} \sin(n\varphi_i)$$

J.-Y. Ollitrault nucl-ex/9711003; A.M. Poskanzer and S.A. Voloshin nucl-ex/9805001



q-vector and v_2 related by definition: $v_2 = \langle \cos(2\varphi_i) \rangle = \langle q_{2,x} \rangle / \sqrt{M}$

width depends on

• non-flow: $\delta_n = \langle \cos(n(\varphi_i, \varphi_j)) \rangle$ (2-particle correlations)

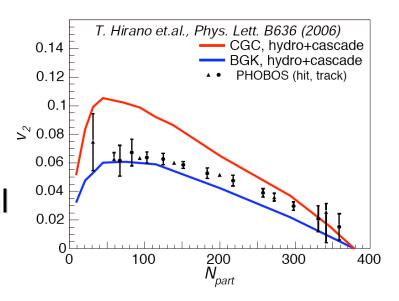
• v_2 fluctuations: σ_v

we measure dynamic width: $\sigma_{q,dyn}^2 = \delta + 2\sigma_v^2$

introduction

ambiguity arises in calculations from uncertainty in initial conditions

perfect fluid conclusion depends on ambiguous comparison to ideal hydro



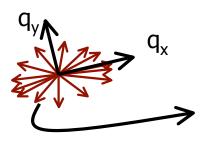
motivation to measure v₂ fluct.: find observable sensitive to initial conditions

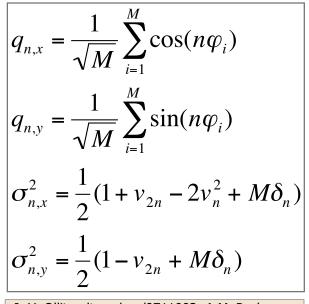
Talk outline:

- analysis procedures and changes since QM06
- non-flow δ_2 and σ_{v2} from the q-distribution
- comparison to cumulants v{2}, v{4}
- v₂ of events with a "ridge" and/or a "jet"!

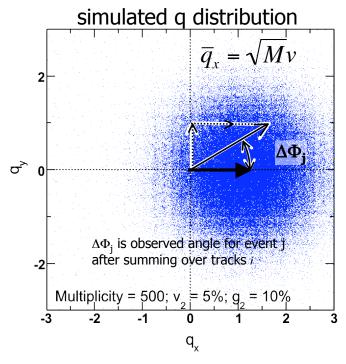
See STAR Poster: Navneet Kumar Pruthi

flow vector distribution





J.-Y. Ollitrault nucl-ex/9711003; A.M. Poskanzer and S.A. Voloshin nucl-ex/9805001



q-vector and v_2 related by definition: $v_2 = \langle \cos(2\varphi_i) \rangle = \langle q_{2,x} \rangle / \sqrt{M}$

sum over particles is a random-walk → central-limit-theorem

width depends on

• non-flow: **broadens** $\delta_n = \langle \cos(n(\varphi_i, \varphi_j)) \rangle$ (2-particle corr. nonflow)

• v₂ fluctuations: **broadens**

flow vector distribution

from central limit theorem, q₂ distribution is a 2-D Gaussian

$$\frac{1}{q}\frac{dN}{dqd(\Delta\Phi)} = \frac{1}{2\pi\sigma_{_{X}}\sigma_{_{Y}}}e^{-\frac{1}{2}\left[\frac{\left(q\cos2\Delta\Phi-\sqrt{M}\,v_{_{2}}\right)^{2}}{\sigma_{_{X}}^{2}} + \frac{q^{2}\sin^{2}2\Delta\Phi}{\sigma_{_{Y}}^{2}}\right]}$$
Ollitrault nucl-ex/9711003;
Poskanzer & Voloshin nucl-ex/980

Poskanzer & Voloshin nucl-ex/9805001

$$\sigma_X^2 = \frac{1}{2}(1 + v_4 - 2v_2^2 + M\delta_2) \text{ and } \sigma_Y^2 = \frac{1}{2}(1 - v_4 + M\delta_2)$$

$$\delta_2 = \langle \cos 2(\varphi_1 - \varphi_2) \rangle_{nonflow}$$

x, y directions are unknown: \rightarrow integrate over all $\Delta\Phi$ and study the length of the flow vector $|\mathbf{q}_2|$

$$\frac{1}{|q_2|} \frac{d\tilde{N}}{d|q_2|} = \frac{1}{|q_2|} \int_{-\infty}^{\infty} dv_2 \frac{dN}{d|q_2|} f(v_2 - \langle v_2 \rangle, \sigma_{v_2})$$

fold v_2 distributions $f(v_2)$ with the q_2 distribution to account for fluctuations σ_{v_2}

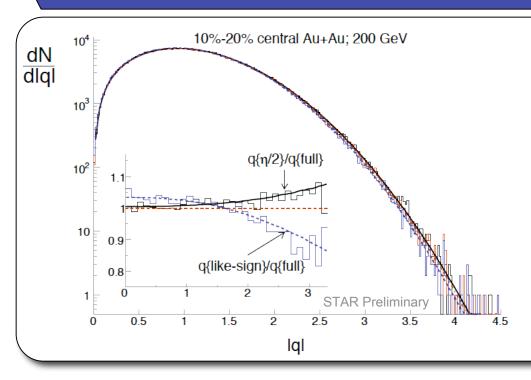
$$\sigma_q^2 \approx \frac{1}{2} \left(1 + M \left(\delta_2 + 2 \sigma_{\nu_2}^2 \right) \right)$$

difficult to distinguish non-flow from fluctuations (and vice-versa)

dynamic width dominated by non-flow and/or fluctuations → not determined independently

$$\sigma_{dyn}^2 \approx \delta_2 + 2\sigma_{v_2}^2$$

correlations and the flow vector



width depends on the track sample

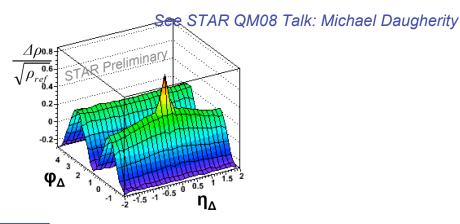
$$\sigma_q^2 \approx \frac{1}{2} \left(1 + M \left(\delta_2 + 2 \sigma_{\nu_2}^2 \right) \right)$$

differences are due to more or less nonflow in various samples

$$\delta_2 = \langle \cos 2(\varphi_1 - \varphi_2) \rangle_{correlated}$$

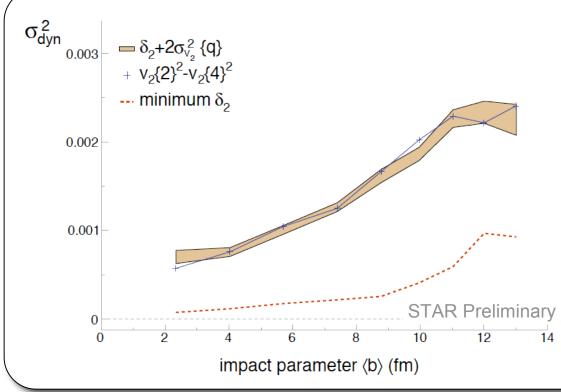
smaller δ_2 for like-sign (charge ordering) larger δ_2 for small η (strong short range correlations)

also in 2-D correlations: can be fit with a $\Delta \eta$ independent $\cos(2\Delta \phi)$ term + non-flow structures



N.B. relationship of measured δ_2 from 2 particle correlations and dynamic width is not trivial: depends on ZYAM and 2-component model (see backup slides)

dynamic width from dN/dq fit



the well constrained combinations of fit parameters are:

$$\langle v_2 \rangle^2 + \sigma_{v_2}^2 + \delta_2 = v_2 \{2\}^2$$

$$\left\langle v_2 \right\rangle^2 - \sigma_{v_2}^2 = v_2 \{4\}^2$$

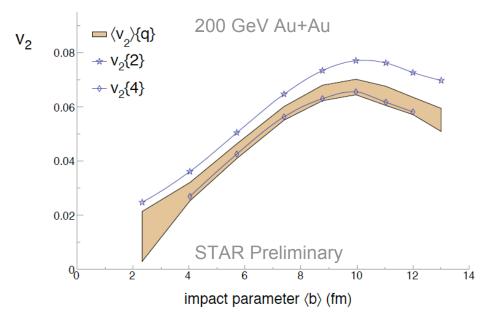
the dynamic width is the difference between the above equations

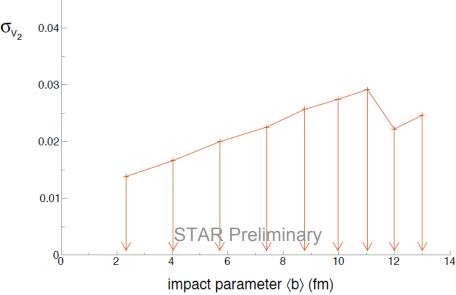
$$\sigma_{dyn}^2 = \delta + 2\sigma_{v_2}^2 = v_2\{2\}^2 - v_2\{4\}^4$$

see Miller, Snellings, nucl-ex/0312008

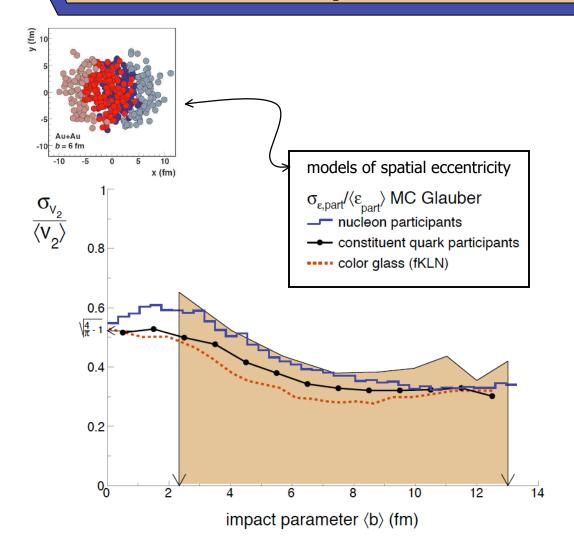
mean and width of $f(v_2)$

analysis places an upper limit on flow fluctuations





Comparison to models



confined quark MC:

treats confined constituent quarks as the participants decreases eccentricity fluctuations

color glass MC:

includes effects of saturation increases the mean eccentricity

comparison to hydro (NexSPheRio): *Hama et.al.* arXiv:0711.4544

eccentricity fluctuations from CGC: *Drescher, Nara. Phys.Rev.* C76:041903,2007

extraction of Knudsen number: Vogel, Torrieri, Bleicher. nucl-th/0703031

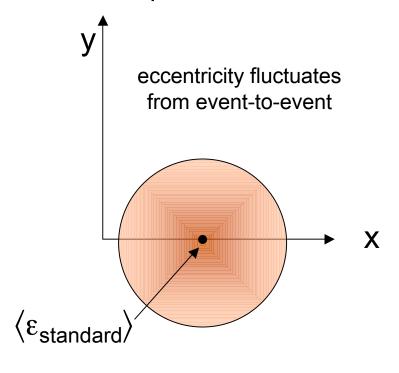
fluctuating initial conditions: *Broniowski, Bozek, Rybczynski. Phys.Rev.* C76:054905, 2007

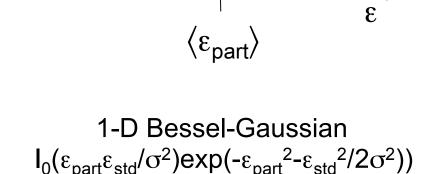
first disagreement with $\varepsilon_{\text{standard}}$ and use of quark MC: Miller, Snellings. nucl-ex/0312008

reaction- or participant-plane

reaction plane → rotation to major axis → defines the partipant plane

 $dN/d\epsilon$



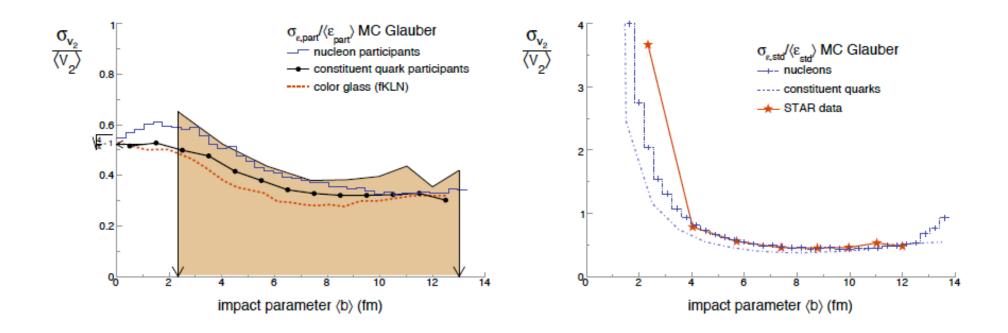


2-D Gaussian

Fitting dN/dq with a Bessel-Gaussian allows for comparison to models of either the participant-plane or reaction-plane

Voloshin, Poskanzer, Tang, Wang: Phys.Lett.B:537-541

reaction-plane, participant-plane



- Data can also be presented in terms of the reaction-plane
- Assume Bessel-Gaussian shape for dN/dv₂
- •use v_{std} instead of $\langle v_2 \rangle$
- •Also gives good description: lesson is that initial geometric fluctuations dominate the dynamic width of dN/dq

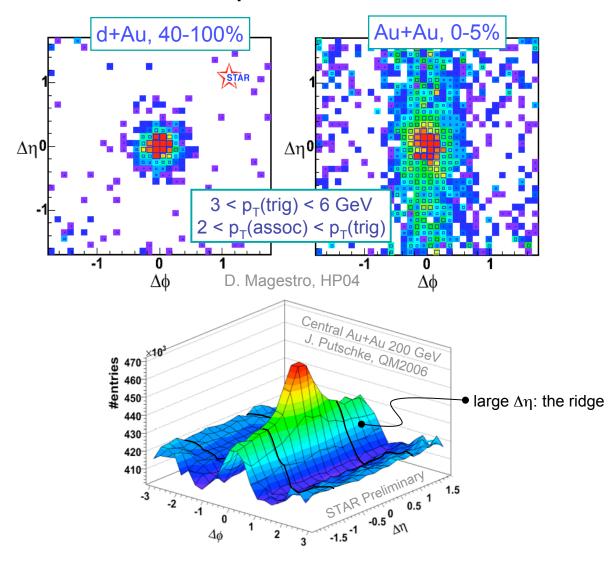
expected geometric fluctuations match observed v₂ fluctuations

but what about two-particle correlations and non-flow?

don't we see huge non-flow in 2-particle correlation data?

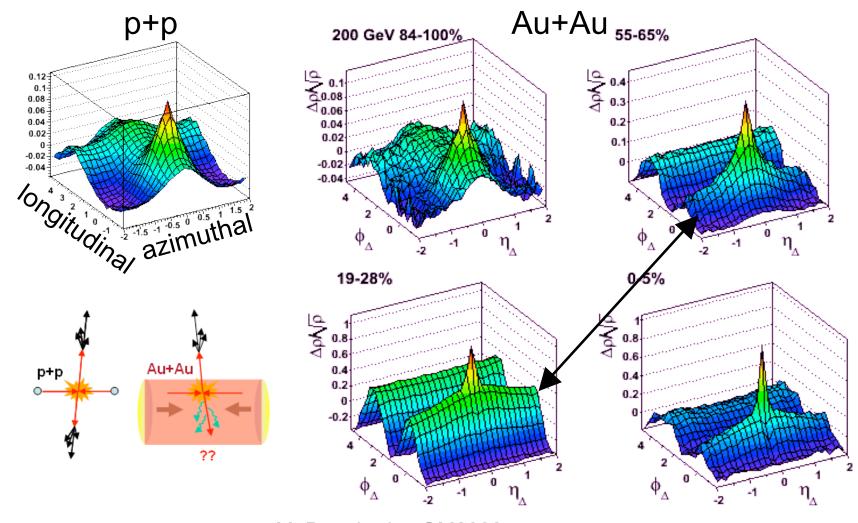
Long range correlations

structures unique to Au+Au collisions

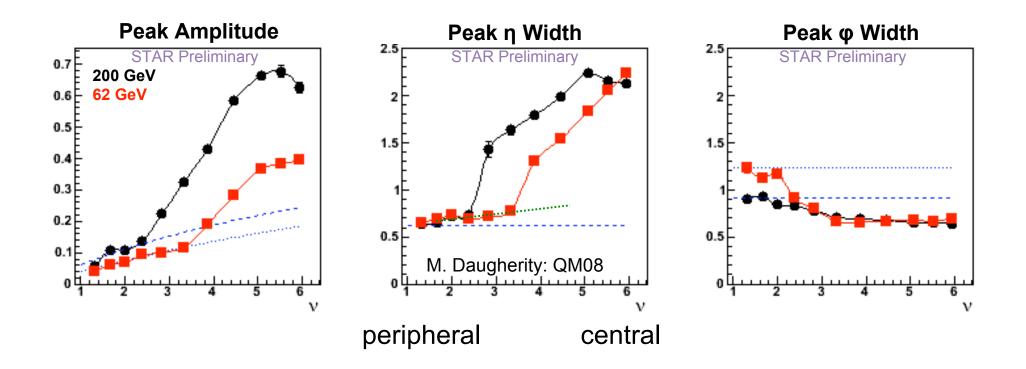


Two particle correlation densities

Correlations of all unique pairs of charged particles



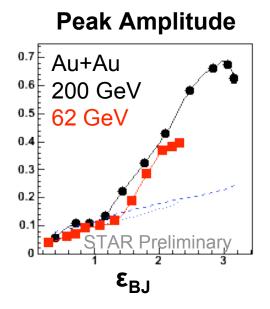
Near-side peak

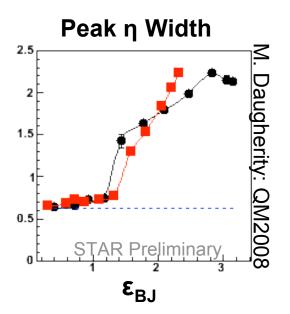


Large increase in peak amplitude and longitudinal width Narrowing in azimuth (boost?)

Deviations between Au+Au and p+p scaling trends

Sudden jump in width and amplitude

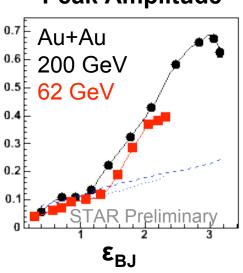




The abrupt transition occurs at the same energy density for two different collision energies!

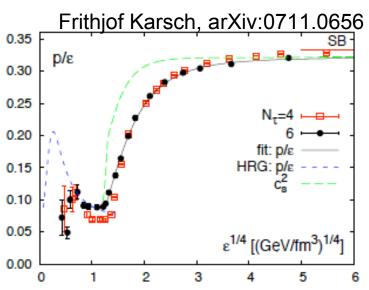
$$\varepsilon_{BJ} = \frac{dE_T/dy\big|_{y=0}}{\pi R^2 \tau_0}$$

Sudden jump in width and amplitude



Peak η Width 2.5 1.5 STAR Preliminary STAR Preliminary

 ϵ_{BJ}



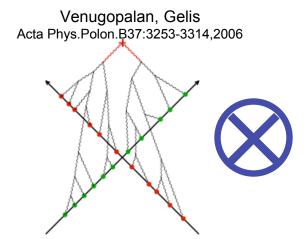
Liberation of colored degrees of freedom near ε = 1.5 GeV/fm³?

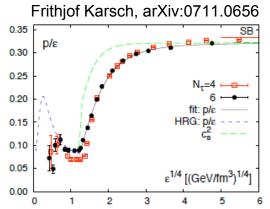
large pressure → QGP expansion?

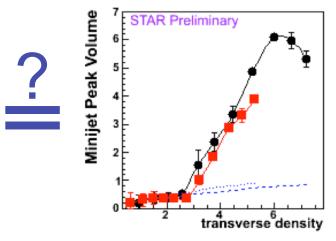
initial spatial correlations translated to momentum space?

interesting checks: more energies, different size nuclei, and particle composition

The Algebra







Initial State Fluctuations:

very general, seen in any model or calculation, EPOS, HIJING, Glauber, CGC

Quark Gluon Plasma Pressure:

first principles calculation of QCD finite temperature phenomena

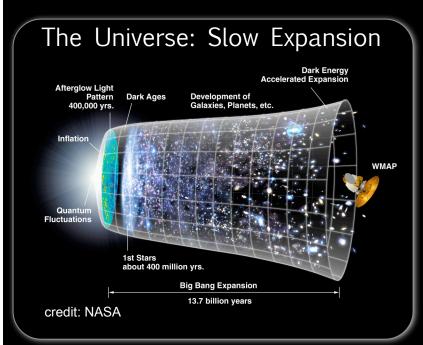
Large Long Range Small $\Delta \phi$ Correlations

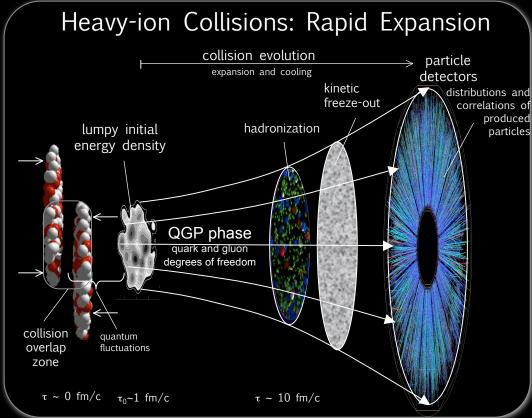
observed in heavy ion data

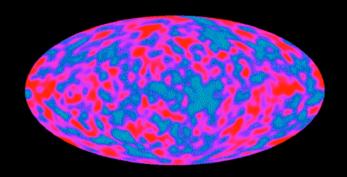
S. A. Voloshin, Phys. Lett. B 632, 490 (2006); C. A. Pruneau, S. Gavin and S. A. Voloshin, Nucl. Phys. A 802, 107 (2008); A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, arXiv:0804.3858 [hep-ph].

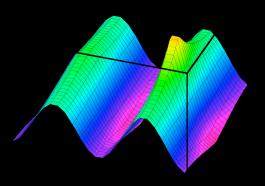
Here is the sensitivity to the EOS

Analogies with the early universe

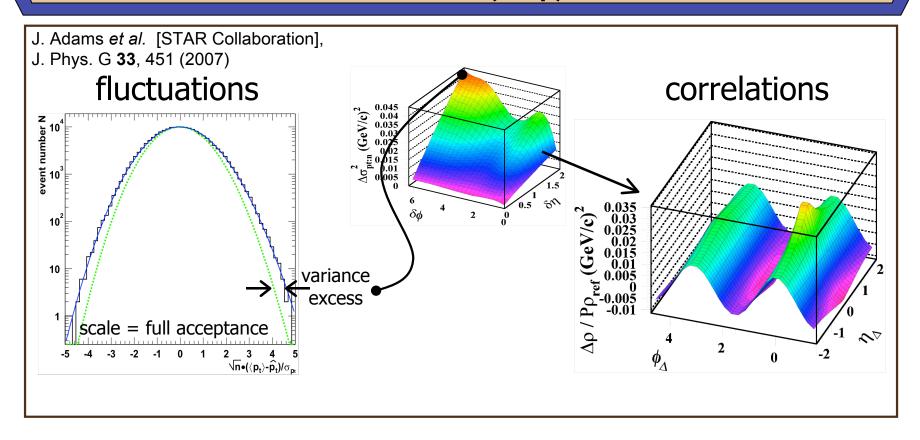








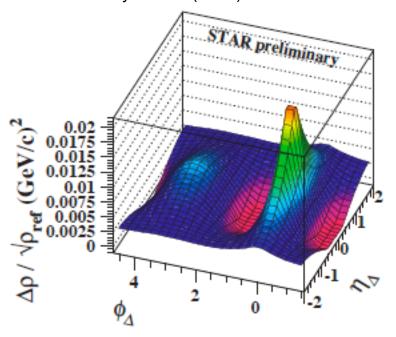
WMAP analogy: $\langle p_T \rangle$ fluctuations



- scale dependence of $\langle p_T \rangle$ fluctuations tells us about p_T correlations
- \bullet $\langle p_T \rangle$ reflects the slope of the spectra; these measurements are the analogy to CMBR temperature fluctuations

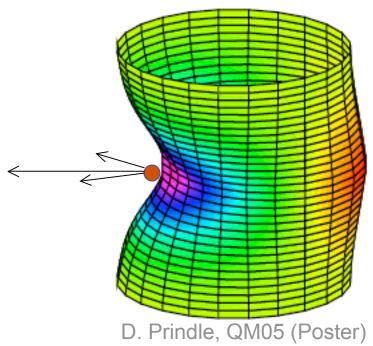
The ridge and the valley

- J. Adams et al. [STAR Collaboration],
- J. Phys. G 32 (2006) L37



same data after subtraction:

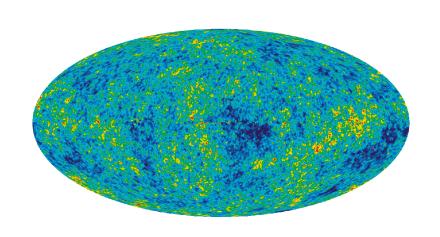
cylindrical format

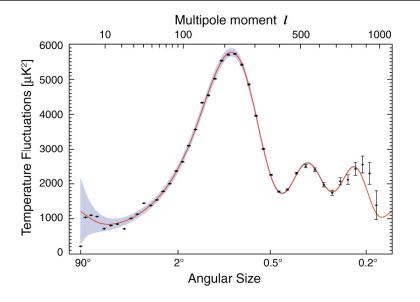


- subtract the elliptic modulation and near side peak
- anamolous depression apparent

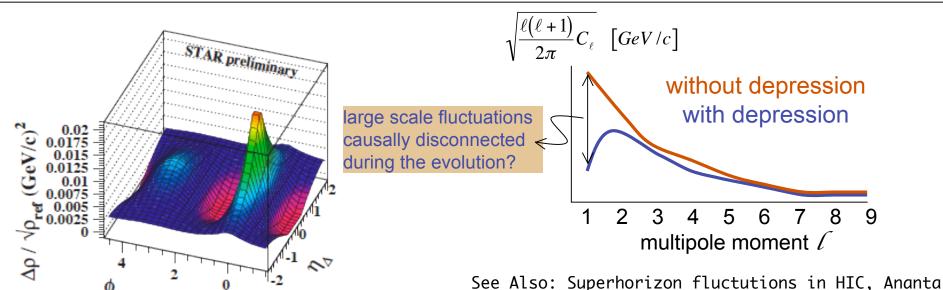
One interpretation: medium response to an impinging minimum-bias jet?

Multipole moments and the valley





P. Mishra, Ranjita K. Mohapatra, et al.

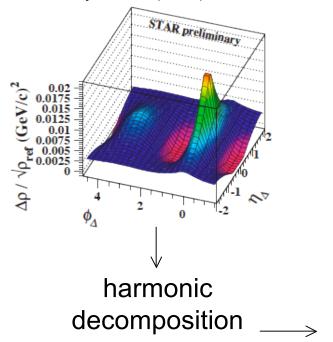


April 28th, 2008

Hydrodynamics in Heavy Ion Collisions and the QGP EOS

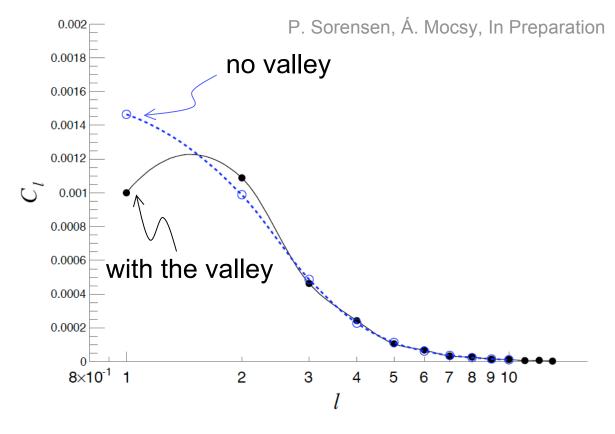
Harmonic decomposition

- J. Adams et al. [STAR Collaboration],
- J. Phys. G 32 (2006) L37



Valley indicates suppression of lower multipole moments

model needed to generate a reference shape



Super-horizon fluctuations

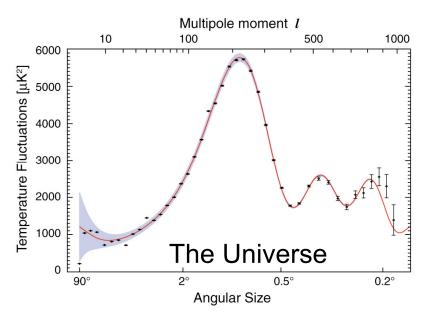
fluctuations with large characteristic length scales remain super-horizon for a longer time

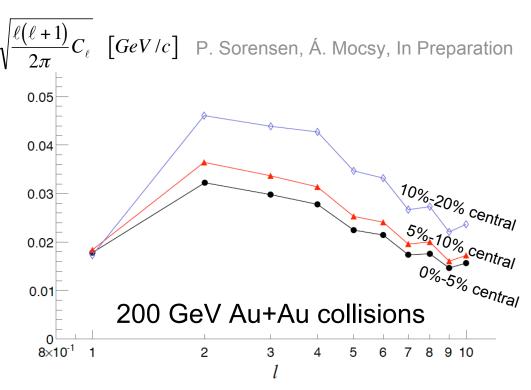
length scale
$$\lambda_{\ell} \approx \frac{R\{Au\}}{\ell}$$

causality and the finite lifetime ($\Delta \tau$) of the fireball prevents the largest modes from fully developing

supressed modes $\lambda_{\ell} > c\Delta \tau$

See Also: Superhorizon fluctutions in HIC, Ananta P. Mishra, Ranjita K. Mohapatra, et al.





Super-horizon fluctuations

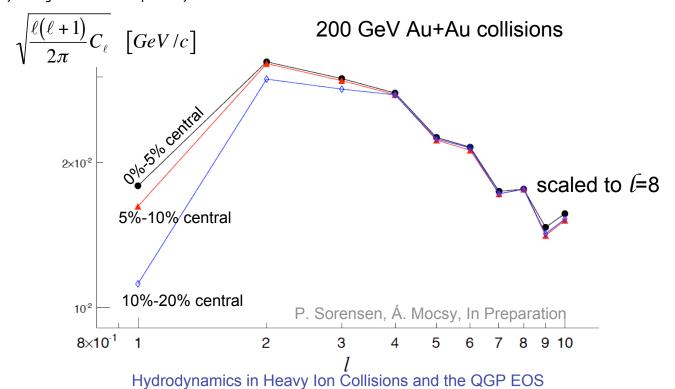
fluctuations with large characteristic length scales remain super-horizon for a longer time

length scale $\lambda_{\ell} \approx \frac{R\{Au\}}{\ell}$

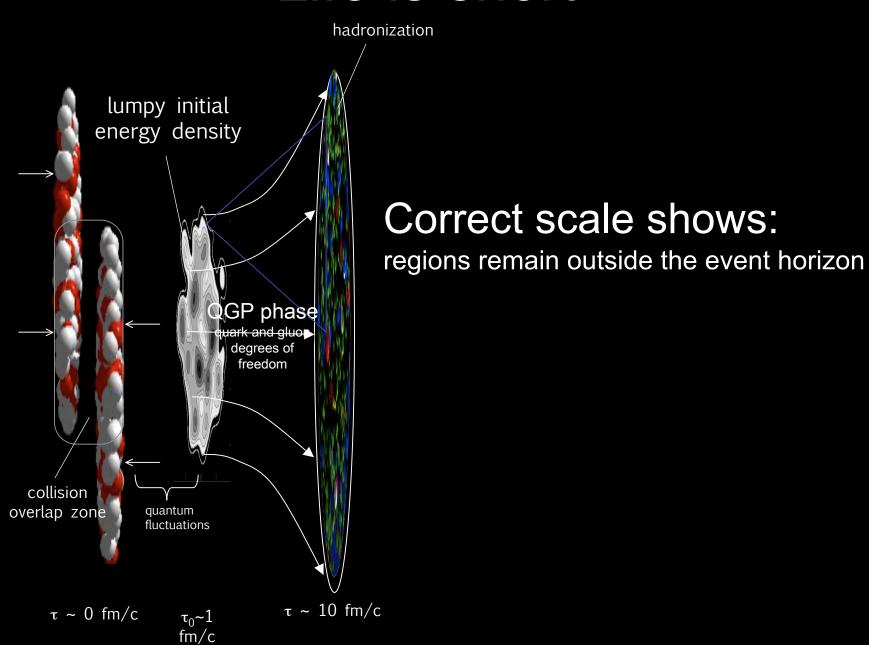
causality and the finite lifetime ($\Delta \tau$) of the fireball prevents the largest modes from fully developing

supressed modes $\lambda_{\ell} > c\Delta \tau$

See Also: Superhorizon fluctutions in HIC, Ananta P. Mishra, Ranjita K. Mohapatra, et al.



Life is short



Conclusions

Dynamic width of dN/dq close to expected width from models of initial geometry fluctuations

Correlations show structures unique to A+A collisions

- a ridge: narrow in φ, broad in η
- ridge develops suddenly near ε=1.5 GeV/fm³
- features of $\langle p_T \rangle$ fluctuations are consistent with super-horizon fluctuations from the initial conditions

If geometry fluctuations are real: near-side "minijet" peak must come from those, not fragmentation

Do trends indicate sudden turn on of color degrees-of-freedom?

Future tests:

```
vary beam energy (2010!) vary system size add particle identification correlate trends with other probes (J/\psi suppression etc.)
```